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Abstract

Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer

worldwide. Many patients still do not benefit from multitargeted antitumor therapy,

even in combination with immunotherapy. m6A-/m1A-/m5C/-m7G- regulators are the

major forms of RNA methylation (RM) modification. development is closely related.

This study summarizes 64 m6A-/m1A-/m5C/-m7G regulators. Based on the

transcriptomic data and clinical information of LUAD in the Cancer Genome Atlas

(TCGA), the role of prognosis RNA methylation modification-regulated lncRNAs

(RM-lncRNAs) in LUAD and microenvironment was explored. To identify
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RM-lncRNAs and how they affect survival and prognosis in LUAD, we constructed

signatures of RM-lncRNAs by univariate and multivariate regression and least

absolute shrinkage and selection operator (LASSO) analysis. Penalized regression

was used to screen and establish a prognostic model closely related to the subgroup of

clinical variables and the degree of immune cell infiltration, and the risk score of each

sample was calculated independently. Using Kaplan-Meier (K-M) analysis, gene

enrichment analysis and multi-pathway clinical correlation analysis, the clinical

significance and potential mechanism of action of the prognostic model were

elucidated, including PLUT, AC091133.4, AC079949.2, and AC068338.3. At the

same time, the high mutation frequency genes significantly associated with high risk

in the prognostic model were further analyzed in combination with the incidence of

somatic mutation of TCGA-LUAD. The risk score and consensus clustering generated

by this prognostic model can effectively predict the clinical outcome and immune

microenvironment infiltration characteristics of LUAD patients from multiple

approaches and multiple methods. The above comprehensive data support the

potential clinical application value of our constructed RM-lncRNA signature in the

prognosis and immune infiltration status of LUAD. The purpose and originality of

this study lies in revealing the potential link between RM modification patterns and

LUAD and treatment response by constructing the LUAD prognostic model of

RM-lncRNAs. This novel RM-lncRNA prognostic model can be used to assess the

prognosis and sensitivity of infiltrating immune cells modulated by immunotherapy in

patients with LUAD.
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1. Introduction

Lung cancer is still currently fatal disease, which at a high level of mortality. There

are an estimated 2.09 million new cases and 1.76 million deaths each year. To make

matters worse, lung cancer incidence and mortality are on the rise. The pathogenesis

of Lung adenocarcinoma (LUAD), the largest subtype of lung cancer, is complex, and



RNA methylation (RM) may be one of the pathogenesis of LUAD. Recently, many

studies have shown that aberrant RM modifications are involved in LUAD. As the

most abundant modification [1–3], RNA post-transcriptional modification has been

considered as an important process in epigenetic regulation [4]. Mechanistically, more

than 70 RMs occurs in mRNA and ncRNA in various tumors across species [5,6]. it

plays a role in regulating gene expression such as RNA stability, localization, mRNA

translation and translocation by affecting chromatin structure, DNA conception,

stability, and protein interaction [7,8]. Different methylation sites exist in different

forms of RM [9]. Recent studies have shown that modifications such as

N6-methyladenosine (m6A) [10,11], N1-methyladenosine (m1A) [12,13],

5-methylcytosine (m5C) [14] and 7-methylguanosine (m7G) [15], which are

widespread in transcriptomic RNA [16], have been shown to be involved in a variety

of human diseases play a broad and profound role [17]. RM regulators have potential

roles on diagnosis, prognosis and treatment strategies of LUAD [18,19]. However, the

prognostic value of RM-related lncRNAs (hereinafter referred to as RM-lncRNAs)

[20] in LUAD is unclear yet. m6A-modified lncRNAs were found in eukaryotic

mRNAs and lncRNAs to play indispensable roles in the course of various

malignancies [21]. For example, FEZF1-AS1, which is affected by RNAmodification,

through the action of ITGA11/miR-516b-5p regulates the ITGA11/miR-516b-5p axis

and is ultimately lead to the evolution of NSCLC [21,22]. In addition, as the target of

METTL3, ectopic expression of ABHD11-AS1 caused poor prognosis in NSCLC [23].

Studies have shown that RM exists in the key regulations of a variety non-coding

RNAs. Moreover, the regulatory effect of lncRNA is closely related to spatial

expression, and its abnormal regulation often affects the development and progression

of cancer. Studies such as these suggest a specific role for RM modifications.

Dysregulation of lncRNAs is associated with LUAD prognosis. It may act as a signal

molecule, or a mediator to recruit other regulatory factors to exert the function of

regulating gene expression on target genes. However, the distribution, functions and

roles of RM modifications in lncRNAs are still poorly understood. Therefore,

RM-lncRNA regulators have crucial applications in the underlying mechanisms



leading to tumor progression and the efficiency of immunotherapy responses [24].

As important as its clinical significance, the tumor microenvironment (TME), as the

environment for tumor survival, is the soil for tumor growth, migration and invasion

[25–28]. During tumorigenesis, TME recruits immune cells and serve as environmental

drivers of tumor growth and metastasis to a certain degree as an environmental driver

of malignancy. However, the modification mechanisms of lncRNAs currently focused

on tumor progression and immune cell infiltration in the TME remain unclear. The

excellent antitumor effect of immunotherapy in malignant tumors has already

abounded [29–31]. As research progresses, in addition to many ICIs similar to PD-L1,

the heterogeneity of TMB, dMMR, and even MSI-H can also be used as

immunotherapy biomarkers [32,33]. Therefore, the purpose of our research is to find

more and more effective biomarkers to guide the prognosis of LUAD and predict the

efficacy of immunotherapy regimen.

In this study, 64 m6A-/m1A-/m5C-/m7G-related genes were summarized with data of

59 normal samples and 535 LUAD samples in TCGA. Differentially expressed RM

regulators in LUAD were screened with LASSO-Cox algorithm and K-M survival

analysis. A threshold of |cor| > 0.3 was used to identify 210 prognosis related

RM-lncRNAs for LUAD prognostic signature construction. Forty-five differential

RM-related lncRNAs affecting the prognosis of LUAD were obtained by univariate

regression analysis related to overall survival (OS). Further prognostic LASSO-Cox

regression obtained a prognostic model composed of four lncRNAs, which were used

as lncRNA markers associated with RM regulators of LUAD. Subsequently, Cox

regression analysis was performed by combining 485 samples with complete clinical

information, and it was confirmed that the high-risk group had a shorter OS time and

was associated with poor prognosis in various clinical subgroups. Consistent

clustering based on the RM-lncRNAs prognostic model also showed significant

differences between groups. The above results suggest that the RM-lncRNAs

prognostic model is an independent prognostic factor for predicting OS. Then, a PPI

interaction network was constructed for the differentially expressed lncRNA

prognostic model related differentially expressed lncRNA genes between the high and



low risk groups, and GO, KEGG and Gene Set Enrichment Analysis (GSEA) were

performed. Our study proposes a LUAD prognostic marker with clinical reference

value based on potential prognosis-related lncRNAs associated with RM

modifications. This study deepens the understanding of TME status in LUAD patients

and lays a theoretical foundation for the selection of immunotherapy.

2. Methods

2.1. Data collection and processing

Transcriptome and simple nucleotide variation data were downloaded from TCGA

(https://cancergenome.nih.gov/), and the expression data of 594 LUAD patients were

compared downloaded. for LUAD patients were downloaded from TCGA was

calculated.

2.2. Identification of RM regulator-related lncRNAs and analysis of their

prognostic value

By consulting the latest literature, a total of 64 m6A-, m1A-, m5C-, m7G-RM

regulator-related genes were obtained. Including 4 m1A-RM regulators (TRMT61A,

TRMT61B, TRMT10C, TRMT6), 21 m5C-RM regulators (ALYREF, DNMT1,

DNMT3A, DNMT3B, DNMT3L, NSUN2, NSUN3, NSUN4, NSUN5, NSUN5P1,

NSUN6, NSUN7, TET1, TET2, TET3, TP53, TRDMT1, YBX1, YBX2, YBX3,

YTHDF3-AS1), 37 m6A-RM regulators [34,35] (METTL3, METTL14, WTAP,

VIRMA, ZC3H13, CBLL1, RBM15, RBM15B, METTL16, ZCCHC4, PCIF1, FTO,

ALKBH5, ALKBH3, YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2,

HNRNPA2B1, HNRNPC, RBMX, IGF2BP1, IGF2BP2, IGF2BP3, FMR1, PRRC2A,

EIF3A, LRPPRC, SRSF3, NXF1, TRMT112, NUDT21, CPSF6, SETD2, SRSF10,

XRN1), and two m7G-RM regulators (METTL1, WDR4). Differentially expressed

RM regulators in tumor and normal tissues in the TCGA-LUAD cohort were

identified. 210 RM-lncRNAs with standard correlation coefficient (|cor|) > 0.3 were

obtained by Pearson correlation analysis.



2.3. Construction and validation of LUAD prognostic signatures of RM-lncRNAs

The TCGA-LUAD cohort was randomly divided into 1:1. Between training and

testing groups, LASSO-Cox regression [36] analysis was used to build an

RM-lncRNA signature, which named RMlncscore [37]. The formula is as follows:

RMlnc-score = Σ (βi × Expi) (β: coefficient, Exp: lncRNA expression level). Then the

patients were divided into high RMlnc score group and low RMlnc score group

according to the median of RMlnc score. K-M survival curves [38] were drawn using

the R package "survival", describing the OS difference between the high and low

groups. ROC was used to evaluate its sensitivity and accuracy [39]. In addition, the

RMlnc score was classified by sex (males and females), age (≤65 years and >65

years), T (T1-2 and T3-4), N (N0 and N1-2), relationship between M (M0 and M1/Mx)

and prognostic power of each subgroup grade (stage I-II and stage III-IV). Then,

through multivariate Cox regression analysis [40], nomogram [41] survival maps and

calibration curves were constructed based on the 1-/3-/5-years survival probabilities

of patients to further evaluate the prognostic value and clinical relevance of the model

lncRNAs.

2.4. Establishment and validation of the prognostic gene signature

Combined with Cox and Lasso regression analysis, the penalized regularization

parameter (λ) was chosen by the R package glmnet, n times equal to 10. Finally,

survival analysis, scatterplots and heatmaps were performed in R software according

to each patient's risk score. Time-dependent ROC curves reflects discriminating

power by the area under the curve (AUC) [42]. Prognostic signature of RM-lncRNAs

were validated by Cox regression, which incarnated independent prognostic factors

via the 'forestplot' package in R. Nomograms and its corresponding were then built to

drawn the clinical benefit.

2.5. Protein Interaction (PPI) network

We used a string-generated database (version 11.0) of DEGs reated to risk scores in

the RM-lncRNAs prognostic model in the TCGA-LUAD dataset to construct a



molecular interaction network for analyzing closely interacting differential genes.

Then, the PPI was exported, and the Cytoscape software was used for further analysis,

the network properties of each node were calculated, and the MCODE [43] and

Cytohubba [44] were used to mine the hub nodes based on the degree of the nodes. It

may have an extremely important function in the modulation of the whole biological

process, which deserves further study.

2.6. Comprehensive gene enrichment analysis

We performed GSEA [45], as well as GO [46] and KEGG [47], to reveal underlying

molecular mechanism with risk score reated to RM-lncRNAs prognostic model.

P<0.05 was considered significant and the graphs were constructed by the gplots

package in R software.

2.7. Consistent clustering of prognostic RM-lncRNAs

Based on the constructed expression data of differentially expressed lncRNAs

associated with RM regulators, “ConsensusClusterPlus" [48] was used to identify

potential molecular subtypes. Prognosis of specimens of different molecular subtypes

was analyzed using the R packages “survival" and “survminer”. Inclusion of clinical

data and analysis of molecular subtype differences in different clinicopathological

features.

2.8. Analysis and evaluation of immune cell infiltration

We analyzed immune cell infiltration by two integrated algorithms——CIBERSORT

[49] and ESTIMATE [50]. Expression data were used to quantify the proportion of 22

TICs per sample using CIBERSORT. Meanwhile, ESTIMATE was used with default

settings to determine immune and stromal cell content. to calculate the element in

TME. At the same time, the Compositional infiltration differences with RM-lncRNAs

prognostic model were compared in immune infiltration based on the clustering

features of the RM-lncRNA prognostic model.



2.9. Statistical Analysis

All statistical analyses were performed using R software (v4.0.2). pvalues < 0.05 were

considered statistically significant if not explicitly stated.

3. Results

3.1. Differential expression analysis of RM regulators in TCGA-LUAD

Fig. 1. Flowchart for constructing and validating a prognostic model for TCGA-LUAD OS.

The workflow of this study is shown in Fig. 1. We first performed gene differential

expression analysis between normal samples and tumor samples in the TCGA-LUAD

dataset, which was displayed in a volcano plot, and some genes with significant

differential expression were marked in the figure (Fig. 2A). The Venn diagram

showed |logFC|> 2 & adj.P < 0.05 as the threshold to screen the intersection of 142

differentially expressed genes (DEGs) and 64 m6A-/m1A-/m5C/-m7G- RM regulated

genes, 24 differentially expressed RM regulators in LUAD were obtained (Fig. 2B).

We then performed LASSO Cox regression analysis in the TCGA-LUAD dataset to

obtain 8 RM regulators with prognostic significance for LUAD (Fig. 2C–D). We

marked the differences with the differential ranking map (Fig. 2E), and reflected the

group differences in gene expression through the differential expression heat map (Fig.

2F). At the same time, group comparison violin plots (Fig. 2G-H) show their

differential expression in the TCGA-LUAD dataset.



Fig. 2. Analysis of differential expression of RM regulators. (A) Volcano plot of gene differential

expression analysis between normal samples and tumor samples in TCGA-LUAD dataset, some genes with

significant differential expression are marked in the figure; (B) Venn diagram of intersection of 64 m1A-, m5C-,

m6A- and m7G RM regulated genes and TCGA-LUAD dataset DEGs; (C-D) LASSO Cox regression analysis

based on 24 differential RM regulated genes, found by least absolute contraction and selection operator (LASSO)

cox regression 8 The best prognosis-related RM regulators; (E) Differential ranking map of RM regulators among

DEGs in the CGA-LUAD dataset; (F) Heat map of differential expression of RM regulators Reflecting the

differences in gene expression between groups; (G-H) Boxplots of differential expression between unpaired

samples and paired samples of 8 differentially prognostic RM regulated genes in the TCGA-LUAD dataset.

3.2. Identification of RM regulator-related lncRNAs in LUAD patients

We performed KM OS analysis on 8 differentially expressed RM regulators that

affected the prognosis and survival of LUAD patients, and plotted the survival curve,

and found that HNRNPC, IGF2BP3, TRDMT1, and IGF2BP1 had significant

statistical significance for OS in LUAD (Fig. 3A –D). We then analyzed lncRNAs



associated with 4 prognostic factors associated with RM regulators. 210

RM-lncRNAs with |cor| > 0.3 screened by Pearson correlation analysis were used for

LUAD prognostic signature construction (Fig. 3E–G).

Fig. 3. Identification of lncRNAs associated with markers of prognostic RM regulators in

LUAD patients. (A-D) TRDMT1, IGF2BP3, HNRNPC, and IGF2BP1 high and low expression groups have

significant differences in the prognosis and survival of LUAD patients, which can be used as OS prognostic

markers for LUAD; (E) Four LUAD OS prognosis were screened by Pearson correlation analysis 210 lncRNAs

(|cor| > 0.3) associated with related RM regulators; (F-G) LASSO coefficient distribution map showing the results

of 210 lncRNAs constructing LUAD prognostic signature analysis.

3.3. Construction and verification of m1A-, m5C-, m6A- and m7G- RM-lncRNAs

prognostic signature in TCGA-LUAD

The above results suggested that RM modification-related lncRNAs may play an

important role in LUAD. Therefore, we further investigated the prognostic features of

RM modification-related lncRNAs in LUAD with univariate Cox regression analysis.

Univariate Cox regression displayed 45 regulatory factors associated with patient



prognosis screened in 210 RM-lncRNAs by forest plot (Fig. 4A). Subsequently,

regression coefficients of the 45 RM-lncRNAs associated with prognosis were

calculated using LASSO Cox regression (Fig. 4B – C). We identified four

RM-lncRNAs for forecast OS in LUAD, including PLUT, AC091133.4, AC079949.2,

and AC068338.3. PCA plots were used to perform dimensionality reduction analysis

between the two groups, suggesting that the risk score could well distinguish LUAD

samples (Fig. 4D). We then calculated the 1-year, 3-year and 5-year AUCs based on

the performance of the four RM-lncRNAs prognostic models by ROC curve test,

which were 0.70 (0.78-0.63), 0.67 (0.73-0.60), 0.69 (0.77-0.61), respectively (Fig. 4E).

Results showed that the risk model has a better prediction effect on the prognosis of

LUAD (Fig. 4A). The K-M survival curve also suggested that the high-risk group was

significantly associated with poor prognosis in LUAD (Fig. 4F). Multivariate Cox

regression analysis was performed on the prognostic model to calculate the patient's

risk score. The risk score, life status, and expression level distribution of the

corresponding four RM-lncRNAs regulators in TCGA-LUAD are shown in Fig. 5A.

Subsequently, we analyzed the predictive performance of RM-lncRNAs prognostic

models - PLUT, AC091133.4, AC079949.2, AC068338.3 with the AUC of ROC,

respectively PLUT (AUC = 0.653)，AC091133.4 (AUC = 0.579)，AC079949.2 (AUC

= 0.619)，AC068338.3 (AUC = 0.724) (Fig. 5B). At the same time, the significant

expression differences of the RM-lncRNAs prognostic model between normal

samples and LUAD samples in unpaired and paired samples were shown in box plots

(Fig. 5C–D). Results suggested that AC068338.3 is low-expressed in tumor tissue,

and AC079949.2, PLUT, and AC091133.4 are highly expressed in tumor tissue.



Fig. 4. Construction and verification of prognostic signature for RM-lncRNAs in

TCGA-LUAD. (A) Forest plot of the univariate Cox regression analysis for RM-lncRNAs; (B-C) LASSO Cox

coefficient profiles of the prognostic signature for RM-lncRNAs; (D) PCA graph dimensionality reduction analysis

Evaluating the risk score can distinguish LUAD samples well; (E) AUC of the timeROC curve calculated the

performance of the RM-lncRNAs prognostic model within 1 year, 3 years and 5 years; (F) The K-M survival curve

also suggests that the high-risk group and LUAD have poor prognosis Significant correlation.

Next, we investigated whether the incidence of somatic mutations in TCGA-LUAD

differed between high and low risk groups in the prognostic RM-lncRNA model. We

used the chi-square test to assess differences in gene mutation frequencies in each

group of samples. Among the 485 samples with complete clinical information, the

genes with the highest mutation frequency in Top15 included TTN (p=2.0e-5),

CSMD3 (p=1.6e-5), USH2A (p=1.7e-3), SPTA1 (p=2.4e-4), PCDH15(p=6.1e-3),

PAPPA2(p=0.04), PCLO(p=0.02), RP1L1(p=8.2e-3), ZNF804A(p=0.01),

HMCN1(p=0.02), NPAP1(p=3.5e-3), NRXN1(p=4.9e-3) ), CACNA1E (p=7.1e-4),



ASPM (p=0.01), SORCS1 (p=0.02). The mutation frequencies were 58.3%, 47.8%,

39.8%, 30.1%, 23.4%, 21.8%, 21.8%, 20.7%, 19.6%, 18.8%, 18.3%, 18.0%, 17.5%,

16.7%, and 15.6%, respectively. We used the "maftools" software package to generate

a mutational map, and presented a waterfall plot (Fig. 5E).

Fig. 5. Prognostic signature of the 4 RM-lncRNAs regulators in internal and external data

set. (A) The distributions of prognostic signature- based risk scores， and heatmap of the expression of the

4regulators in different risk subgroups at the bottom (B) ROC curves of four RM-lncRNAs prognostic models to

test 1-year, 3-year and 5-year performance of LUAD patients; (C-D) The boxplots show the significant expression

differences between the unpaired and paired samples of the RM-lncRNAs prognostic model between normal

samples and LUAD samples; (E) The incidence of somatic mutations in TCGA-LUAD was significantly different

between the high and low risk groups in the prognostic RM-lncRNA model, and the mutation waterfall plot

showed the genes with the highest mutation frequency in Top15.

3.4. Prognostic characteristics of clinical subgroups in a prognostic model of

RM-lncRNAs



Box plots are used to show the prognostic models of RM-lncRNAs—PLUT,

AC091133.4, AC079949.2, and AC068338.3 in TCGA-LUAD tumor samples, and the

expression differences among different clinical variable subgroups, including Gender,

Smoker, Pathologic stage, TNM, overall survival (OS), Disease-specific survival

(DSS) and Primary therapy outcome. The results suggested that AC079949.2 was

significantly overexpressed in Male (Fig. 6A), AC068338.3 was significantly

underexpressed with smokers (Fig. 6B). PLUT, AC079949.2 were significantly

overexpressed in Stage III&Stage IV and T3&T4 groups with advanced LUAD, while

AC068338.3 was significantly underexpressed (Fig. 6C – F). High expression of

AC091133.4 and low expression of AC068338.3 were significantly associated with

shorter OS and DSS in LUAD (Fig. 6G,I). AC068338.3 was significantly

underexpressed in LUAD patients of CR&PR (Fig. 6H).

Fig. 6. Correlation analysis of clinical subgroups in RM-lncRNAs prognostic model. The

differences in the expression of RM-lncRNAs prognostic model between different clinical variable subgroups in

TCGA-LUAD tumor samples, including Gender (A), Smoker (B), Pathologic stage (C), TNM (D-F) , OS, DSS



and Primary therapy outcome (G-I).

3.5. OS prognostic analysis in LUAD

In order to further analyze the impact of the RM-lncRNAs prognostic model on

LUAD more accurately, we used the OS time and survival status of the samples to

describe the OS difference between the high and low expression group by drawing the

K-M survival curve. We randomly divided the tumor samples from the TCGA-LUAD

cohort into a training set and a validation set. Table 1 shows the baseline data of the

clinical data of the patients between the two groups. The between-group variances

were similar, and the data were normally distributed. Survival differences in the

training group, test group, and overall TCGA-LUAD cohort, respectively. Consistent

with the correlation of clinical syndrome differentiation, survival analysis found that

PLUT (Fig. 7A–C), high expression of AC079949.2 (Fig. 7G–I), and low expression

of AC068338.3 (Fig. 7D–F) were associated with a poor prognosis. OS status and

shorter survival time were significantly correlated.Although there was no significant

correlation with most clinical variables due to too few samples with AC091133.4

expression. The above analysis confirmed that the prognostic gene signature of

RM-lncRNAs composed of 4 key lncRNAs we constructed was significantly

associated with OS and tumor clinical variable subgroups in LUAD.



Fig. 7. OS prognostic analysis of RM-lncRNAs prognostic model in LUAD. (A-C) High

expression of PLUT was significantly associated with poor KM OS prognosis in TCGA-LUAD cohort, training set

and validation set, respectively; (D-F) Low expression of AC068338.3 in TCGA-LUAD cohort, training set and

validation set, respectively was significantly associated with poor OS prognosis; (G-I) High expression of

AC079949.2 was significantly associated with poor KM OS prognosis in the TCGA-LUAD cohort, training set

and validation set, respectively.



Table 1 Clinical characteristics of LUAD patients in training and validation sets.

Characteristics Train(N=256) Test(N=257) Total(N=513) pvalue FDR

Age

Mean±SD 64.44±10.14 66.21±9.84 65.33±10.02

Median[min-max] 65.00[38.00,87.00] 68.00[33.00,88.00] 66.00[33.00,88.00]

Sex 0.23 0.71

FEMALE 144(28.07%) 130(25.34%) 274(53.41%)

MALE 112(21.83%) 127(24.76%) 239(46.59%)

Status 0.18 0.71

Alive 172(33.53%) 157(30.60%) 329(64.13%)

Dead 84(16.37%) 100(19.49%) 184(35.87%)

T 0.2 0.71

T1 78(15.20%) 94(18.32%) 172(33.53%)

T2 140(27.29%) 134(26.12%) 274(53.41%)

T3 23(4.48%) 22(4.29%) 45(8.77%)

T4 12(2.34%) 7(1.36%) 19(3.70%)

TX 3(0.58%) 0(0.0e+0%) 3(0.58%)

N 0.44 0.71

N0 165(32.23%) 165(32.23%) 330(64.45%)

N1 43(8.40%) 54(10.55%) 97(18.95%)

N2 38(7.42%) 34(6.64%) 72(14.06%)

N3 1(0.20%) 1(0.20%) 2(0.39%)

NX 8(1.56%) 3(0.59%) 11(2.15%)

M 0.07 0.42

M0 171(33.60%) 173(33.99%) 344(67.58%)

M1 18(3.54%) 7(1.38%) 25(4.91%)

MX 66(12.97%) 74(14.54%) 140(27.50%)

Stge 0.09 0.44

Stge I 133(26.34%) 142(28.12%) 275(54.46%)



Characteristics Train(N=256) Test(N=257) Total(N=513) pvalue FDR

Stge II 57(11.29%) 65(12.87%) 122(24.16%)

Stge III 43(8.51%) 39(7.72%) 82(16.24%)

Stge IV 19(3.76%) 7(1.39%) 26(5.15%)

3.6. Construction of PPI Molecular Interaction Network

The possible mechanisms of co-regulation, cooperation or competition between genes

are important. In order to discover more relevant genes related to the Hub

RM-lncRNA prognosis model, we constructed a network for the DEGs between high

and low risk groups, and the limma algorithm obtained the 535 LUAD samples in the

TCGA-LUAD dataset. 233 DEGs between high and low risk groups (|logFC| > 0.5,

adj P-value < 0.05). A protein-protein interaction network (PPI) was constructed

through the STRING database to reflect the intermolecular interactions, and the

maximum confidence interaction score was set to 0.4, which was analyzed and

visualized by Cytoscape's Network Analyzer tool (v3.7.2) (Fig. 8A). Top30 closely

related genes were screened using the CytoHubba plugin (Fig. 8B). Meanwhile, the

MCODE plugin screened and visualized 46 closely related genes of PPI network

modules (Fig. 8C). We performed further gene enrichment analysis on the 30

intersection Hub genes obtained by the two clustering algorithms, including CDC20,

UF2, UBE2C, TPX2, NCAPH, BUB1, AURKB, HJURP, NEK2, RRM2, NDC80,

MELK, RACGAP1, TOP2A, TTK, CDCA5, BIRC5, AURKA, NUSAP1, PLK1,

KIF2C, KIF4A, CCNB2, CENPA, NCAPG, PBK, CDK1, CCNB1, DLGAP5,

CCNA2.



Fig. 8. Screening and functional enrichment of Hub DEGs between high and low risk groups

in RM-lncRNAs prognostic model. (A) The network analyzer tool of Cytoscape (v3.7.2) visualized the PPI

network of 223 DEGs (|LogFC| >0.5, adj P-value < 0.05) between the RM-lncRNAs prognostic model high and

low risk groups in the TCGA-LUAD dataset, The maximum confidence interaction score is 0.4. As the degree of

interaction increases, the color gradually changes from yellow to blue, and the font changes from small to large; (B)

CytoHubba plugin is used to screen Top 30 closely related genes; (C) MCODE plugin filters and visualizes genes

closely related to PPI network module; (D-K) Enrichment histogram, chord diagram, bubble diagram, and

enrichment network diagram in turn of GO and KEGG pathway enrichment analysis based on 30 Hub DEGs.

3.7. Enrichment analysis of Hub genes associated with prognostic models of

RM-lncRNAs

Next, we aimed to explore the underlying mechanisms by which the RM-lncRNAs

prognostic model acts on LUAD. Through GO, KEGG enrichment analysis and to

elucidate the Hub DEGs related to the RM-lncRNAs prognostic model, and analyze

the possible enriched signaling pathways and molecular mechanisms. Enrichment

results of GSEA may reveal the mechanism of action of the RM-lncRNAs prognostic



model in LUAD. GO enrichment analysis of the above-mentioned genes indicated

that these Hub genes may exist in lamellar body, multivesicular body, clathrin-coated

endocytic vesicle, etc., through surfactant homeostasis, chemical homeostasis within a

tissue，Toll-like receptor signaling pathway and other pathways, and other functions

(Fig. 8, Table 2–3).

Table 2 GO enrichment analysis of Top30 Hub DEGs with close relationship between high and

low risk groups in RM-lncRNAs prognostic model.

Ontology ID Description p.adjust qvalue

BP GO:0043129 surfactant homeostasis 1.54e-05 6.91e-06

BP GO:0048875 chemical homeostasis within a tissue 1.54e-05 6.91e-06

BP GO:0002224 toll-like receptor signaling pathway 3.94e-04 1.77e-04

CC GO:0042599 lamellar body 2.38e-11 3.42e-12

CC GO:0005771 multivesicular body 7.77e-07 1.11e-07

CC GO:0045334 clathrin-coated endocytic vesicle 1.23e-06 1.76e-07

MF GO:0004190 aspartic-type endopeptidase activity 0.003 0.001

MF GO:0070001 aspartic-type peptidase activity 0.003 0.001

Table 3 KEGG enrichment analysis of Top30 Hub DEGs with close relationship between high and

low risk groups in RM-lncRNAs prognostic model.

Ontology ID Description p.adjust qvalue

KEGG hsa05133 Pertussis 0.008 8.41e-04

KEGG hsa04610 Complement and coagulation 0.008 8.41e-04



Ontology ID Description p.adjust qvalue

cascades

KEGG hsa04611 Platelet activation 0.011 0.001

KEGG hsa04145 Phagosome 0.013 0.001

KEGG hsa00790 Folate biosynthesis 0.031 0.003

KEGG hsa00052 Galactose metabolism 0.031 0.003

KEGG hsa00051
Fructose and mannose

metabolism
0.031 0.003

KEGG hsa00040
Pentose and glucuronate

interconversions
0.031 0.003

Subsequently, GSEA based on the RM-lncRNAs prognostic model. Implications for

high-risk groups identified by the RM-lncRNA prognostic model were associated with

DNA damage and repair, cell cycle, aerobic glycolysis and gluconeogenesis,

pyrimidine metabolism, proteasomal degradation, hematoxylation of important

proteins, and the development of various cancers and pathways were closely related

(Fig. 9, Table 4). In this 4 lncRNA prognostic gene signature, only AC068338.3 is a

potential protective factor, while PLUT, AC091133.4, and AC079949.2 are all

potential risk indicators.



Fig. 9. Gene Set Enrichment Analysis (GSEA) between high and low risk groups in the

RM-lncRNAs prognostic model. (A) High risk group is enriched in WP database and enriched in SMALL

CELL LUNG CANCER, INTEGRATED CANCER PATHWAY, INTEGRATED BREAST CANCER PATHWAY,

DNA REPLICATION, DNA DAMAGE RESPONSE; (B) High risk group is enriched in REACTOME database

and enriched in TP53 REGULATES METABOLIC GENES, SUMOYLATION, SIGNALING BY WNT,

SIGNALING BY NOTCH4, SELECTIVE AUTOPHAGY; (C) High-risk groups are enriched in KEGG database

in SMALL CELL LUNG CANCER, KEGG OXIDATIVE PHOSPHORYLATION, P53 SIGNALING PATHWAY,

DNA REPLICATION, CELL CYCLE; (D) The high-risk group was enriched in the BIOCARTA database enriched

in PROTEASOME PATHWAY, BIOCARTA MCM PATHWAY, G2 PATHWAY, G1 PATHWAY, FIBRINOLYSIS

PATHWAY.



Table 4 Gene Set Enrichment Analysis (GSEA) between high and low risk groups in the

RM-lncRNAs prognostic model.

ID ES NES p.adjust q

KEGG_CELL_CYCLE -0.76956 -2.25126 0.02513 0.020536

KEGG_DNA_REPLICATION -0.8452 -2.0946 0.02513 0.020536

KEGG_PROTEASOME -0.84283 -2.15983 0.02513 0.020536

PID_ATR_PATHWAY -0.82902 -2.07439 0.02513 0.020536

PID_AURORA_B_PATHWAY -0.85249 -2.12458 0.02513 0.020536

PID_PLK1_PATHWAY -0.83972 -2.15186 0.02513 0.020536

REACTOME_ACTIVATION_OF_ATR_IN

_RESPONSE_TO_REPLICATION_STRES

S -0.85287 -2.12287 0.02513 0.020536

REACTOME_ACTIVATION_OF_THE_PR

E_REPLICATIVE_COMPLEX -0.88645 -2.15381 0.02513 0.020536

REACTOME_APC_C_CDH1_MEDIATED

_DEGRADATION_OF_CDC20_AND_OT

HER_APC_C_CDH1_TARGETED_PROTE

INS_IN_LATE_MITOSIS_EARLY_G1 -0.7854 -2.15424 0.02513 0.020536

REACTOME_APC_C_MEDIATED_DEGR

ADATION_OF_CELL_CYCLE_PROTEIN

S -0.80713 -2.28936 0.02513 0.020536

REACTOME_ASSEMBLY_OF_THE_PRE

_REPLICATIVE_COMPLEX -0.84521 -2.297 0.02513 0.020536

REACTOME_AUF1_HNRNP_D0_BINDS_

AND_DESTABILIZES_MRNA -0.78595 -2.07664 0.02513 0.020536

REACTOME_CELL_CYCLE_CHECKPOI

NTS -0.79036 -2.49464 0.02513 0.020536

REACTOME_CELL_CYCLE_MITOTIC -0.72518 -2.42103 0.02513 0.020536

REACTOME_CHROMOSOME_MAINTE -0.74138 -2.11174 0.02513 0.020536



ID ES NES p.adjust q

NANCE

REACTOME_DEGRADATION_OF_DVL -0.76046 -2.0232 0.02513 0.020536

REACTOME_DEGRADATION_OF_GLI1_

BY_THE_PROTEASOME -0.76092 -2.03951 0.02513 0.020536

REACTOME_DNA_DOUBLE_STRAND_

BREAK_REPAIR -0.68357 -2.01293 0.02513 0.020536

REACTOME_DNA_REPLICATION -0.82154 -2.40773 0.02513 0.020536

REACTOME_DNA_REPLICATION_PRE_

INITIATION -0.85136 -2.40258 0.02513 0.020536

REACTOME_DNA_STRAND_ELONGATI

ON -0.86377 -2.08591 0.02513 0.020536

REACTOME_G1_S_DNA_DAMAGE_CH

ECKPOINTS -0.75883 -2.06225 0.02513 0.020536

REACTOME_G1_S_SPECIFIC_TRANSCR

IPTION -0.86573 -2.04288 0.02513 0.020536

REACTOME_G2_M_CHECKPOINTS -0.81999 -2.42426 0.02513 0.020536

REACTOME_G2_M_DNA_DAMAGE_CH

ECKPOINT -0.78157 -2.09528 0.02513 0.020536

REACTOME_HOMOLOGOUS_DNA_PAI

RING_AND_STRAND_EXCHANGE -0.79078 -2.00439 0.02513 0.020536

REACTOME_HOMOLOGY_DIRECTED_

REPAIR -0.71815 -2.06956 0.02513 0.020536

REACTOME_HOST_INTERACTIONS_OF

_HIV_FACTORS -0.68882 -2.02021 0.02513 0.020536

REACTOME_M_PHASE -0.70037 -2.27782 0.02513 0.020536

REACTOME_METABOLISM_OF_POLYA

MINES -0.75184 -2.00857 0.02513 0.020536

REACTOME_MITOTIC_G1_PHASE_AND -0.7835 -2.34322 0.02513 0.020536



ID ES NES p.adjust q

_G1_S_TRANSITION

REACTOME_MITOTIC_G2_G2_M_PHAS

ES -0.69885 -2.16578 0.02513 0.020536

REACTOME_MITOTIC_METAPHASE_A

ND_ANAPHASE -0.7699 -2.42722 0.02513 0.020536

REACTOME_MITOTIC_PROMETAPHAS

E -0.72209 -2.24396 0.02513 0.020536

REACTOME_MITOTIC_SPINDLE_CHEC

KPOINT -0.78094 -2.27118 0.02513 0.020536

REACTOME_NEGATIVE_REGULATION

_OF_NOTCH4_SIGNALING -0.77381 -2.04113 0.02513 0.020536

REACTOME_ORC1_REMOVAL_FROM_

CHROMATIN -0.83795 -2.27979 0.02513 0.020536

REACTOME_PROCESSING_OF_DNA_D

OUBLE_STRAND_BREAK_ENDS -0.7495 -2.03058 0.02513 0.020536

REACTOME_REGULATION_OF_RUNX2

_EXPRESSION_AND_ACTIVITY -0.75843 -2.07441 0.02513 0.020536

REACTOME_RESOLUTION_OF_SISTER

_CHROMATID_COHESION -0.79703 -2.32966 0.02513 0.020536

REACTOME_RHO_GTPASES_ACTIVAT

E_FORMINS -0.75563 -2.2465 0.02513 0.020536

REACTOME_S_PHASE -0.76316 -2.31135 0.02513 0.020536

REACTOME_SCF_SKP2_MEDIATED_DE

GRADATION_OF_P27_P21 -0.76166 -2.04149 0.02513 0.020536

REACTOME_SEPARATION_OF_SISTER

_CHROMATIDS -0.77814 -2.40389 0.02513 0.020536

REACTOME_STABILIZATION_OF_P53 -0.76936 -2.0469 0.02513 0.020536

REACTOME_SURFACTANT_METABOLI 0.883621 2.039876 0.02513 0.020536



ID ES NES p.adjust q

SM

REACTOME_SWITCHING_OF_ORIGINS

_TO_A_POST_REPLICATIVE_STATE -0.80286 -2.27702 0.02513 0.020536

REACTOME_THE_ROLE_OF_GTSE1_IN

_G2_M_PROGRESSION_AFTER_G2_CH

ECKPOINT -0.79793 -2.21032 0.02513 0.020536

WP_CELL_CYCLE -0.76823 -2.24497 0.02513 0.020536

WP_DNA_IRDAMAGE_AND_CELLULA

R_RESPONSE_VIA_ATR -0.73601 -2.04605 0.02513 0.020536

WP_DNA_REPLICATION -0.85596 -2.1696 0.02513 0.020536

WP_G1_TO_S_CELL_CYCLE_CONTROL -0.74342 -2.01411 0.02513 0.020536

WP_GASTRIC_CANCER_NETWORK_1 -0.87993 -2.04436 0.02513 0.020536

WP_PARKINUBIQUITIN_PROTEASOMA

L_SYSTEM_PATHWAY -0.74061 -2.01102 0.02513 0.020536

WP_RETINOBLASTOMA_GENE_IN_CA

NCER -0.80406 -2.26576 0.02513 0.020536

3.8. Validation of clinical significance and predictive accuracy of prognostic gene

signatures of RM-lncRNAs

In this part, we combined clinical features and risk characteristics to verify the

reliability of this prognostic RM-lncRNAs gene signature. A nomogram map

containing important clinical variable parameters affecting survival in LUAD and its

calibration plot were created, showing the results of multivariate Cox regression

analysis. The effectiveness of age, sex, tumor TNM stage and clinical grade, and risk

scores of RM-lncRNAs gene signatures in predicting 1-, 3-, and 5-year survival in

LUAD was assessed (Fig. 10A–B). For the results to show that the risk score as a

predictor has a better and more significant predictive value than other clinical features.

Significant significance for LUAD OS included prognostic RM-lncRNAs gene



signature risk score, tumor T stage and N stage.

Fig. 10. Consistent clustering of prognostic RM-lncRNAs gene signatures. (A-B) Nomogram and

calibration curves were evaluated for the effectiveness of risk scores based on age, sex, tumor TNM stage and

clinical grade, and genetic signatures of RM-lncRNAs in predicting 1-/3-/5-year survival in LUAD; (C) Consensus

clustering diagram based on prognostic RM-lncRNAs gene signature; (D) When K = 2, secondary consensus

clustering of LUAD samples is better significant; (E) Consensus clustering sample distribution diagram ; (F)

Survival differences between groups based on molecular subtype Cluster1 & 2 mediated by gene signatures of

RM-lncRNAs.



Table 5 Correlation of prognostic gene signatures of RM-lncRNAs with immune cell infiltration

in LUAD-TMB.

RM-lncRNAs Immune cells Cor p.adjust

AC068338.3 NK CD56dim cells -0.11177 0.009672

CD8 T cells 0.129982 0.002593

pDC 0.132001 0.002217

NK cells 0.145736 0.000722

Mast cells 0.14904 0.000543

T helper cells -0.15578 0.000298

Th17 cells 0.157613 0.000252

TFH 0.162308 0.000163

Eosinophils 0.16647 0.00011

Tgd -0.18575 1.53E-05

NK CD56bright cells 0.248446 5.72E-09

Th2 cells -0.40265 2.86E-22

AC079949.2 B cells -0.11706 0.006718

Cytotoxic cells -0.12607 0.00349

Eosinophils -0.13677 0.001519

Th1 cells -0.13934 0.001232

T cells -0.14723 0.000635

pDC -0.15788 0.000246

Mast cells -0.16537 0.000122

Th17 cells -0.16565 0.000119

Macrophages -0.16617 0.000113

Th2 cells 0.193414 6.61E-06

DC -0.19664 4.59E-06

iDC -0.20767 1.26E-06

Tgd 0.276338 7.83E-11

TFH -0.28483 1.92E-11



RM-lncRNAs Immune cells Cor p.adjust

AC091133.4 Neutrophils -0.10407 0.016038

iDC -0.10574 0.014412

Eosinophils -0.10791 0.012513

Tcm -0.13033 0.002524

Mast cells -0.21361 6.13E-07

PLUT Tem -0.10539 0.014734

T cells -0.1154 0.00754

Th2 cells 0.115779 0.007346

NK cells -0.124 0.004072

Cytotoxic cells -0.12743 0.003151

pDC -0.12764 0.003102

DC -0.13859 0.001311

Th1 cells -0.15709 0.000265

TFH -0.16316 0.00015

iDC -0.17087 7.12E-05

Macrophages -0.18816 1.18E-05

3.9. Consistent clustering of gene signatures of prognostic RM-lncRNAs

The above analysis proves that our constructed RM-lncRNAs gene signature can well

predict the OS and clinical prognosis of LUAD. We performed unsupervised

clustering of 503 LUAD samples based on the molecular subtypes mediated by the

gene signatures of the four RM-lncRNAs.Grouped with Cluster1 (n = 296) and

Cluster2 (n = 207) reflected that K = 2 was the best number of clusters with the

highest intra-group correlation and minimal inter-group interference (Fig. 10C –E).

Therefore, LUAD patients were divided into two subgroups. Subsequently, we

evaluated the survival difference between the Cluster1 & 2 groups, and the KM

survival analysis showed that the Cluster2 patients had a significant survival

advantage, p=2.8e-4, HR=1.77 (1.29-2.42) (Fig. 10F).



3.10. Characteristics of the immune microenvironment in a prognostic model of

RM-lncRNAs

Furthermore, we found that the features of 4 lncRNA prognostic gene signatures were

correlated with TME and expression of key immune checkpoints. Based on the above

data, we separately analyzed the differences in TME immune cell infiltration between

the high- and low-risk subgroups, as well as the RM-lncRNAs prognostic model

consistent clustering Cluster1 & 2 groups, and displayed them as box plots. The

results of CIBERSORT showed differences in the distribution of 22 immune

infiltrating cells between the high and low risk groups of the RM-lncRNAs prognostic

model (Fig. 11A), and between the RM-lncRNAs prognostic model consistent

clustering groups (Fig. 11B). The results showed that B cells memory, T cells CD4

memory resting, Macrophages M1, Mast cells resting, and Dendritic cells resting in

the high-risk group of the RM-lncRNAs prognostic model and in the consistent

cluster Cluster1 were significantly underexpressed between the two types of groups.

In addition, the high-risk group also had significantly less infiltration of Monocytes, T

cells CD4 memory activated, and Cluster1 had significantly less infiltration of T cells

regulatory (Tregs), NK cells resting, Macrophages M0, and Mast cells activated (Fig.

11A–B). Combined with the effect of immune cell infiltration on tumor tissue, the

results suggest that the prediction of poor risk prognosis by 4 lncRNA prognostic gene

signature is also closely related to TMB in LUAD tissue. Consistent cluster grouping

based on this prognostic model can well distinguish the immune infiltrating

morphology of poor LUAD. Cluster 2 is considered to be a "hot tumor" with a better

prognosis, while cluster 1 is considered a "cold tumor" with a poor prognosis.

In addition, based on the high- and low-risk grouping and consistent clustering of the

RM-lncRNAs prognostic model, we analyzed the significant differences in the

stromal score and immune score between the risk groups of the LUAD samples, and

the low risk was significantly higher (Fig. 11C – E). Consistent clustering of

ESTIMATE scores and stromal scores for Cluster 2 (Fig. 11F – H). It was also



consistent with the immune infiltration distribution results, supporting the reliability

of the prognostic model of

RM-lncRNAs.

Fig. 11. Differences in immune infiltration in prognostic models of RM-lncRNAs. (A) Box plot

of differences in TME immune cell infiltration between high and low risk subgroups of RM-lncRNAs prognostic

model ;(B) Consistent clustering of cluster 1 & 2 of differences in TME immune cell infiltration box plot; (C-E)

RM-lncRNAs prognostic model of high and low The difference box group comparison chart of ESTIMATEScore,

ImmuneScore and StromalScore of risk subgroups; (F-H) Box plots comparison chart of ESTIMATEScore,

ImmuneScore and StromalScore of RM-lncRNAs prognostic model consistent clustering group Cluster1 & 2.

3.11. Correlation of immune infiltrating cells

Furthermore, we sought to determine the correlation between molecular expression

subsets and immune-infiltrating cells of the RM-lncRNAs prognostic model. We

reflect the correlation between the 4 lncRNA prognostic gene signatures and immune

cell infiltration by lollipop plots, respectively. Fig. 12A – D shows the correlation



analysis of immune infiltrating cells of AC079949.2, AC091133.4, AC068338.3, and

PLUT, respectively. result. In order to reflect whether the 4 lncRNA prognostic gene

signatures are differentially correlated with LUAD, we analyzed the effect of the

expression levels of RM-lncRNAs prognostic model on the differences in immune

cell infiltration in LUAD based on the TCGA-LUAD database. Considering the

insufficient amount of gene expression samples, we only showed the differences in

immune cell infiltration between AC079949.2, AC068338.3 high and low expression

groups, and the results suggested that immune cells such as TBNK had significant

infiltration differences (Fig. 12E–F). At the same time, a scatterplot with a strong

correlation (|Cor|>0.2) is shown (Fig. 12G–K).

Fig. 12. Correlation of immune infiltrating cells. (A-D) Lollipop plot of correlation between 4 lncRNA

prognostic gene signature and immune cell infiltration; (E-F) Differential box type of immune cell infiltration

between AC079949.2, AC068338.3 high- and low- expression groups in TCGA-LUAD Group comparison plots;

(G-K) Scatter plots showing the correlation between the RM-lncRNAs prognostic model and significantly

correlated immune cells in LUAD.



4. Discussion

LUAD is a major cause of tumor-related death, and its tumorigenesis involves the

accumulation of genetic and epigenetic events in respiratory epithelial cells [51,52],

as well as antitumor immune responses [53]. Reversible dynamic RM, as a major

chemical modification type, is involved in important tumor malignant phenotypes,

and regulates the body's metabolism and fate [53,54] As epitranscriptomic-driven

development unfolds, poor prognosis due to inefficiency of treatment and failure of

early diagnosis is still commonplace today [55,56]. RNA modification is involved in

the occurrence and progression of lung cancer by reducing the stability or expression

of mRNA [57], encoding the suppressor of oncogenes to reduce its inhibitory effect

and enhance the stability and expression of pro-oncogene transcripts [58]. However,

whether m6A-/m1A-/m5C/-m7G-related regulators are involved in the development

of LUAD and TME immune cells through their effects on lncRNAs. Little progress

has been made in the study of infiltration [59]. There is evidence for an interaction

between lncRNAs and RM in tumors. Although there are currently many biological

markers for predicting prognosis in LUAD, unfortunately, there are few studies on

lncRNAs [58–60]. In this study, for the first time, we identified 210 RM-related

lncRNAs that were significantly differentially expressed in tumor tissues in

TCGA-LUADt, of which 45 RM-lncRNAs were confirmed to have prognostic value.

The prognostic significance of the RM-lncRNAs gene signature was further validated

by Cox regression combining clinical and risk characteristics. All results supported

the clinical significance of the RM-lncRNAs gene signature (PLUT, AC091133.4,

AC068338.3 and AC079949.2) as a poor prognosis in LUAD.

A genome-wide DNA methylation analysis of early stage I LUAD has confirmed that

abnormal methylation of the PLUT promoter can predict the risk of early recurrence

in patients with early stage I adenocarcinoma [61,62]. Aberrant methylation of PDX1

is mainly through the transcriptional regulation of PLUT, thereby mediating the

occurrence of lung adenocarcinoma. AC068338.3 had been reported to act as an

immune-related lncRNA that plays a crucial role in the tumor immune



microenvironment of LUAD and is associated with the progression of LUAD

tumorigenesis [62,63]. There were many related reports on AC079949.2, for example,

it is related to the OS of ESCA patients, and in LUAD, it can be used as an immune-

and hypoxia-related lncRNA to predict the clinical stratification of patients, so as to

judge the prognosis and immune microenvironment of patients [64,65]. Although

there is no report on AC091133.4, the findings of this study have drawn attention to

the impact of this molecule on the prognosis of patients with LUAD.

Therefore, we further grouped 2 clusters by consensus clustering analysis based on

the RM-lncRNAs gene signature in LUAD. The differences in immune cell

infiltration of TMB in LUAD tissues were also analyzed. The results showed that

cluster 1 had better OS than cluster 2. A relationship between RM-related lncRNAs

and poor prognosis in LUAD was supported.

Based on the above findings, we further compared the the difference of immune

microenvironmental landscape of each LUAD sample between risk groups and the

clustering based on the RM-lncRNAs gene signature, TME and immune examinations

relationship between points. Cluster 1 and low-risk groups were enriched with a large

number of immune-infiltrating cells, including important tertiary lymphoid structures

such as TBNK cells. Regardless of the effect of 4 RM-lncRNAs on the OS of LUAD

in the training set or test set of TCGA-LUAD, the results suggested that AC068338.3

is a potential protective factor, while PLUT, AC091133.4, and AC079949.2 are all

potential risk indicators. Consistent with the survival analysis results of risk groups

bassed on 4 RM-lncRNA gene signatures. All the results support that our

RM-lncRNAs prognostic model can effectively predict the overall survival of LUAD

patients in different clinical subgroups, and at the same time infer immunotherapy

efficacy by predicting differences in immune microenvironment infiltration. We also

validated the predictive ability of the prognostic model for patients with poor clinical

outcomes and immune response tolerance in high-risk populations. The prognostic

models of RM-related lncRNAs are highly heterogeneous among different risk groups.

Next, we investigated the incidence of my somatic mutation between high- and

low-risk group in TCGA-LUAD RM-lncRNA model Top15 genes including N1,



NPAP1, NRXN1, CACNA1E, ASPM, SORCS1. Notably, we providing a potential

novel direction for the treatment of LUAD. We tried to explore the construction and

validation of a new LUAD prognostic model based on

m6A-/m1A-/m5C-/m7G-related regulatory factors, and verified that the prognostic

model can be used as an independent factor to affect the occurrence and development

of LUAD. Results of our RM-lncRNAs prognostic model are helpful for clinical

diagnosis and treatment according to the pathological stage of LUAD. Meanwhile,

more targeted immunotherapy related to RM-lncRNAs in the future opens up new

possibilities.

5. Conclusion

Our study initially used Cox regression analysis to screen out 4

m6A-/m1A-/m5C-/m7G-RM related genes (TRDMT1, IGF2BP3, HNRNPC,

IGF2BP1) associated with the OS rates of LUAD. The 210

m6A-/m1A-/m5C-/m7G-related lncRNAs with which they were significantly

co-expressed were performed to construct a prognostic model using the least absolute

shrinkage method and selection operator. Four key prognostic RM-lncRNAs

signatures were significantly associated with OS in LUAD patients. At the same time,

nomogram was established to analyze the important clinical variables and OS of

LUAD within 1, 3 and 5 years, and the reliability was verified by calibration curve

and subgroup KM survival analysis. Through cluster analysis, the

m6A-/m1A-/m5C-/m7G-related lncRNAs in the TCGA -LUAD database were

divided into two clusters. Finally, variable subgroup differences in immune cell

infiltration were analyzed. Thus, the predictive significance of the risk model of RM

regulators for the clinical prognosis of LUAD was verified. The above comprehensive

data support that the four m1A-, m5C-, m6A-, and m7G-related regulatory factors we

constructed may be promising biomarkers for future research.
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